Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
2.
Biosaf Health ; 4(3): 179-185, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1872950

ABSTRACT

Like antibody evaluation, using an effective antigen-specific T-cell immunity assessment method in coronavirus disease 2019 (COVID-19) patients, survivors and vaccinees is crucial for understanding the immune persistence, prognosis assessment, and vaccine development for COVID-19. This study evaluated an empirically adjusted enzyme-linked immunospot assay for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T-cell immunity in 175 peripheral blood samples from COVID-19 convalescents and healthy individuals. Results of viral nucleic acid were used as the gold standard of infection confirmation. The SARS-CoV-2M peptide pool had higher sensitivity of 85% and specificity of 71% for the single peptide pool. For combined peptide pools, the parallel evaluation (at least one of the peptide pools is positive) of total peptide pools (S1&S2&M&N) had higher sensitivity (up to 93%), and the serial evaluation (all peptide pools are positive) of total peptide pools had higher specificity (up to 100%). The result of the serial evaluation was better than that of the parallel evaluation as a whole. The detection efficiency of M and N peptide pool serial evaluation appeared the highest, with a sensitivity of 80% and specificity of 93%. This T-cell immunity detection assay introduced in this report can achieve high operability and applicability. Therefore, it can be an effective SARS-CoV-2-specific cellular immune function evaluation method.

3.
Clin Infect Dis ; 75(1): e1072-e1081, 2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-1769226

ABSTRACT

BACKGROUND: The longitudinal antigen-specific immunity in COVID-19 convalescents is crucial for long-term protection upon individual re-exposure to SARS-CoV-2, and even more pivotal for ultimately achieving population-level immunity. We conducted this cohort study to better understand the features of immune memory in individuals with different disease severities at 1 year post-disease onset. METHODS: We conducted a systematic antigen-specific immune evaluation in 101 COVID-19 convalescents, who had asymptomatic, mild, moderate, or severe disease, through 2 visits at months 6 and 12 after disease onset. The SARS-CoV-2-specific antibodies, comprising neutralizing antibody (NAb), immunoglobulin (Ig) G, and IgM, were assessed by mutually corroborated assays (ie, neutralization, enzyme-linked immunosorbent assay [ELISA], and microparticle chemiluminescence immunoassay [MCLIA]). Meanwhile, T-cell memory against SARS-CoV-2 spike, membrane, and nucleocapsid proteins was tested through enzyme-linked immunospot assay (ELISpot), intracellular cytokine staining, and tetramer staining-based flow cytometry, respectively. RESULTS: SARS-CoV-2-specific IgG antibodies, and NAb, can persist among >95% of COVID-19 convalescents from 6 to 12 months after disease onset. At least 19/71 (26%) of COVID-19 convalescents (double positive in ELISA and MCLIA) had detectable circulating IgM antibody against SARS-CoV-2 at 12 months post-disease onset. Notably, numbers of convalescents with positive SARS-CoV-2-specific T-cell responses (≥1 of the SARS-CoV-2 antigen S1, S2, M, and N proteins) were 71/76 (93%) and 67/73 (92%) at 6 and 12 months, respectively. Furthermore, both antibody and T-cell memory levels in the convalescents were positively associated with disease severity. CONCLUSIONS: SARS-CoV-2-specific cellular and humoral immunities are durable at least until 1 year after disease onset.


Subject(s)
COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , Cohort Studies , Humans , Immunity, Humoral , Immunoglobulin G , SARS-CoV-2
4.
Biochim Biophys Acta Proteins Proteom ; 1870(2): 140736, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1509583

ABSTRACT

We present an integrated analysis of urine and serum proteomics and clinical measurements in asymptomatic, mild/moderate, severe and convalescent cases of COVID-19. We identify the pattern of immune response during COVID-19 infection. The immune response is activated in asymptomatic infection, but is dysregulated in mild and severe COVID-19 patients. Our data suggest that the turning point depends on the function of myeloid cells and neutrophils. In addition, immune defects persist into the recovery stage, until 12 months after diagnosis. Moreover, disorders of cholesterol metabolism span the entire progression of the disease, starting from asymptomatic infection and lasting to recovery. Our data suggest that prolonged dysregulation of the immune response and cholesterol metabolism might be the pivotal causative agent of other potential sequelae. Our study provides a comprehensive understanding of COVID-19 immunopathogenesis, which is instructive for the development of early intervention strategies to ameliorate complex disease sequelae.


Subject(s)
Asymptomatic Infections , COVID-19/immunology , Cholesterol/metabolism , Convalescence , Proteomics , COVID-19/blood , COVID-19/urine , Case-Control Studies , Cholesterol/blood , Enzyme-Linked Immunosorbent Assay , Humans , Immunity , Myeloid Cells/immunology , Neutrophils/immunology , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL